Construct a confidence interval of the population of proport
Construct a confidence interval of the population of proportion at the given level of confidence.
X=120, n = 1200, 94% confidence. The upper bound of confidence interval is
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.1          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.008660254          
               
 Now, for the critical z,              
 alpha =   0.06
 Thus, z(alpha) =    1.554773595        
 Thus,              
               
       
 upper bound = p^ + z(alpha) * sp =    0.113464734 [ANSWER]          
               

