Background Linear regression is the process of fitting a set
     Background Linear regression is the process of fitting a set of data pairs to a straight line. The assumption is that the data can be modeled by a linear relationship. Our task will be to extract from the seemingly noise-corrupted data the parameters of the linear model. We are given a set of data pairs, x.y, osi #include   #define MAX_NUMBER_OF_LINES 10 // parse a maximum of 10 lines #define MAX_LINE_SIZE 50       // parse a maximum of 50 chars per line  int main () {     FILE* fh = fopen(\"file.txt\", \"r\"); // open the file      char temp[MAX_LINE_SIZE]; // some buffer storage for each line      // storage for MAX_NUMBER_OF_LINES integers     int  d_out[MAX_NUMBER_OF_LINES];      // storage for MAX_NUMBER_OF_LINES strings each MAX_LINE_SIZE chars long     char s_out[MAX_NUMBER_OF_LINES][MAX_LINE_SIZE];      // i is a special variable that tells us if we\'re parsing a number or a string (0 for num, 1 for string)     // di and si are indices to keep track of which line we\'re currently handling     int i = 0, di = 0, si = 0;      while (fgets(temp, MAX_LINE_SIZE, fh) && di < MAX_NUMBER_OF_LINES) // read the input file and parse the string     {         temp[strlen(temp) -1] = \'\\0\'; // get rid of the newline in the buffer          char* c = strtok(temp, \" \");  // set the delimiters          while(c != NULL)         {             if (i == 0) // i equal to 0 means we\'re parsing a number             {                 i = 1; // next we\'ll parse a string, let\'s indicate that                 sscanf(c, \"%d\", &d_out[di++]);             }             else // i must be 1 parsing a string             {                 i = 0; // next we\'ll parse a number                 sprintf(s_out[si++], \"%s\", c);             }             c = strtok(NULL, \" \");         }         printf(\"%d %s\ \", d_out[di -1], s_out[si - 1]); // print what we\'ve extracted     }      fclose(fh);      return 0; }  
 
    
  Solution
#include
