Answer each of the following questions related to Sound Inte
Solution
(a). Intensity I = 10 -7 W/m 2
Sound intensity level L = 10 log 10 ( I / Io)
Where Io = reference intensity = 10 -12 W/m 2
Substitute values you get , L = 10 log 10 (10 -7 / 10 -12 )
= 10 log 10 (10 5)
= 10 ( 5 )
= 50 dB
(b).Total intensity I \' = 7 I = 7 x10 -7 W/m 2
Sound intensity level L \' = 10 log 10 ( I \' / Io)
Where Io = reference intensity = 10 -12 W/m 2
Substitute values you get , L = 10 log 10 (7 x10 -7 / 10 -12 )
= 10 log 10 (7x10 5)
= 10 ( 5.845 )
= 58.45 dB
(c).Given L \" = 80 dB
Sound intensity level L\" = 10 log 10 ( I\" / Io)
Where Io = reference intensity = 10 -12 W/m 2
Substitute values you get , 80 = 10 log 10 (I \"/ 10 -12 )
8 = log 10 (I \" /10 -12)
(I \" /10 -12) = 10 8
I \" = 10 8 x 10 -12
= 10 -4 W/m 2
(d).Given L \" = 90 dB
Sound intensity level L\" = 10 log 10 ( I\" / Io)
Where Io = reference intensity = 10 -12 W/m 2
Substitute values you get , 90 = 10 log 10 (I \"/ 10 -12 )
9 = log 10 (I \" /10 -12)
(I \" /10 -12) = 10 9
I \" = 10 9 x 10 -12
= 10 -3 W/m 2
We know Intensity is inversely proportional to square of the distance.
i.e., I\" /I \"\' = r\"\' 2 /r\" 2
Given r \"\' = 2r\"
I \" / I \"\' = (2r\") 2 / r\" 2 = 4
So, intensity at twice as far from the sound source I \"\' = I\" / 4
I\"\' = 0.25 x10 -3 W/m 2
Required intensity level L\"\'= 10 log 10 ( I \'\" / Io)
Where Io = reference intensity = 10 -12 W/m 2
Substitute values you get , L\"\' = 10 log 10 (0.25 x10 -3 / 10 -12 )
= 10 log 10 (0.25x10 9)
= 10 ( 8.397 )
= 83.97 dB

