5 On average a factory has 17 accidents per month a What is
5. On average, a factory has 1.7 accidents per month. a. What is the probability that they have no accidents in this month? b. What is the probability that they have zero accidents in a 3-month period? c. What is the probability that they have two accidents or fewer in a month? d. What is the probability that they have more than four accidents in a month?
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes =    1.7      
           
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.182683524 [ANSWER]
*****************
b)
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes = 3 mo*1.7 accidents/mo =   5.1      
           
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.006096747 [ANSWER]
*********************
c)
Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    1.7      
           
 x = the maximum number of successes =    2      
           
 Then the cumulative probability is          
           
 P(at most   2   ) =    0.757223207 [ANSWER]
*******************
d)
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    1.7      
           
 x = our critical value of successes =    4      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   4   ) =    0.970385194
           
 Thus, the probability of at least   5   successes is  
           
 P(more than   4   ) =    0.029614806 [ANSWER]


