Find the inverse function of each of the following functions
Find the inverse function of each of the following functions. Specify the domains of the inverse functions. (a) f(x) = (1/5x) + 8
(b) h(x) = 5/(x + 3)
(c) g(x) = 43 x 7
(d) j(x) = x + x 1
e) k(x) = 16 x^2, 0 x 4
Solution
a) . f(x) = (1/5x) + 8
domain : 1/5x is not equal to zero
so x is not equal to zero
range : (-infinte , infinte)
inverse function:
let f(x) = y
x = f inverse (y)
y = (1/5x) + 8
y - 8 = (1/5x)
5x = 1 / y -8
x = (1/5(y-8) )
so f inverse of x = 1/5(x-8)
b) .
h(x) = 5/(x+3)
domain x+3 !=0
x != -3
x is not equal to -3
range : all the values
inverse function:
h(x) =y
y = 5 /(x+3)
(x+3) = 5/y
x = 5/y -3
h inverse of (x) = 5/x -3
c) .
g(x) = 43 x 7
domain: all values
range :alll values
inverse :
g(x) =y
y =43 x 7
y+7 - 43 = -x
x = -y -7 +43
so g inverse(x) = -x -7 +43
d)
j(x) = x + x 1
domain:
all the positve values
range : (-1 , infinte)
inverse:
j(x) = x + x 1
j(X) =y
y = 2x -1
2x = y+1
x = (y+1)/2
x = [ (y+1) /2]^2
so j inverse (x) = [ (x+1) /2]^2
e)
k(x) = 16 x^2, 0 x 4
domain: 0 <= x <4
range: 0 x 4
inverse:
k(x) =y
16 x^2 =y
16 -x^2 =y^2
-x^2 =y^2 -16
x^2 =16-y^2
x = sqrt(16-y^2)
k inverse (x) =16 x^2

