Solve 4y 36y csc3x Show me how to solve this I am lostSolu
Solve 4y\" + 36y = csc3x Show me how to solve this. I am lost.
Solution
We will solve this by variation of parameters
We can rewrite the ode as
y\'\'+9y= csc(3x)/4
First we solve the associated homogeneous ode
y\'\'+9y=0
Genral solution ot this is
yc=c1 sin(3x)+c2 cos(3x)
IN variation of parameters we use yc to make a guess for particular solution by treating constants c1,c2 as functions of x
So the guess is
yp=P(x) sin(3x)+Q(x) cos(3x)
With the constraint
P\' sin(3x)+Q\' cos(3x)=0
Q\'=-P\' tan(3x)
So,
yp\'=3P cos(3x)-3Q sin(3x)
yp\'\'=-9yp+3P\' cos(3x)-3Q\' sin(3x)
So,
yp\'\'+9yp= 3P\' cos(3x)-3Q\' sin(3x)= csc(3x)/4
Using the constraint
3P\' cos(3x)+3P\' sin^2(3x)/cos(3x)=csc(3x)/4
3P\'=cot(3x)/4
Integrating gives
3P=log(sin(3x))/12
P=log(sin(3x))/36
3P\'=cot(3x)/4
P\'=cot(3x)/12
Hence,
Q\'=-1/12
Q\'=-x/12
So,
yp=log(sin(3x))sin(3x)/36-xcos(3x)/12
General solution is
y=yh+yp


