Find the equation of the regression line for the given data
Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (Each pair of variables has a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The caloric content and the sodium content (in milligrams) for 6 beef hot dogs are shown in the table below.
xCalories, x
150
180
120
130
90
190
Sodium, y
410
460
350
380
250
520
(A)Find the regression equation.?
(Round to three decimal places as needed.)
(a) Predict the value of y for x=170
Choose the correct answer below.
A.168.633
B.459.633
C.386.883
D.not meaningful
(b) Predict the value of y for x=100
Choose the correct answer below.
A. 289.883
B.168.633
C. 386.883
D.not meaningful
(c) Predict the value of y for x=140
Choose the correct answer below.
A.386.883
B.289.883
C.459.633
D.not meaningful
(d) Predict the value of y for x=50
Choose the correct answer below.
A.459.633
B. 289.883
C.168.633
D.not meaningful
| xCalories, x | 150 | 180 | 120 | 130 | 90 | 190 | (a)  x=170 calories | (b)  x=100 calories | |
| Sodium, y | 410 | 460 | 350 | 380 | 250 | 520 | (c)x=140 calories | (d)  x=50 calories | 
Solution
Using technology, we get              
               
 slope =    2.425233645          
 intercept =    47.38317757          
               
 Thus, the regression line is              
               
 y^ =    2.425x   + 47.383 [ANSWER]
*****************************
a)
Thus, if x =    170
   
 Then  
   
 y^ =    459.633 [answer]
**********************
b)
Thus, if x =    100  
       
 Then      
       
 y^ =    289.883   [answer]
*********************
c)
Thus, if x =    140
   
 Then  
   
 y^ =    386.883 [answer]
********
d)
As x = 50 is not within the range of x values in your sample,
OPTION D: NOT MEANINGFUL.



