2 The recent average starting salary for new college graduat
2- The recent average starting salary for new college graduates in computer information systems is $47,500. Assume salaries are normally distributed with a standard deviation of $4,500.
What is the probability of a new graduate receiving a salary between $45,000 and $50,000?
What is the probability of a new graduate getting a starting salary at least $55,000?
What percent of starting salaries that are no more than $42,250?
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    45000      
 x2 = upper bound =    50000      
 u = mean =    47500      
           
 s = standard deviation =    4500      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.555555556      
 z2 = upper z score = (x2 - u) / s =    0.555555556      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.289257361      
 P(z < z2) =    0.710742639      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.421485278   [ANSWER]
*********************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    55000      
 u = mean =    47500      
           
 s = standard deviation =    4500      
           
 Thus,          
           
 z = (x - u) / s =    1.666666667      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.666666667   ) =    0.047790352 [ANSWER]
*************************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    42250      
 u = mean =    47500      
           
 s = standard deviation =    4500      
           
 Thus,          
           
 z = (x - u) / s =    -1.166666667      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1.166666667   ) =    0.121672505 [ANSWER]


