1 Let X be the random variable with distribution function pX
(1) Let X be the random variable with distribution function pX(x) defined by pX(-1) = 1/5, pX(0) = 1/5, pX(1) = 2/5, pX(2) = 1/5.
(a) let Y be the random variable defined by he equation Y = X + 3. Find the distribution function pY(y) of Y.
(b) Let Z be the random variable defined by the equation Z = X2. Find the distribution function pZ(z) of Z.
Solution
a)PY(-1)=P(2)=2+3=5; PY(0)=P(3)=3+3=6;PY(1)=P(4)=4+3=7
B)PZ(-1)=P(1)=1; PZ(0)=P(0)=0; PZ(1)=P(1)=1
