Customers arrive to a bank branch according to a Poisson pro
Solution
Probability of time of arrival has exponential distribution
then, probabiltiy of number of arrivals has a poisson distribution
= 1/5 per minute
= 0.2 per minute
t = time in minutes
P(x) = e^(-t)*(t)^x/x!
a)P(X>1,t=30) = 1 - P(X=0,t=30) = 1 - e^(-0.2*30)*(0.2*30)^0/0!
P = 1 - 0.00247875218
P = 0.997521248
b) P(x=0,t=15) = e^(-0.2*15)*(0.2*15)^0/0! = 0.0497870684
c) P(X>=2,t=30) = 1 - P(X=1,t=30) - P(x=0,t=30) = 1 -e^(-0.2*30)*(0.2*30)^1/1! - 0.00247875218
= 1 - 0.0148725131 - 0.00247875218
= .9826487252124646
d) this will be binomial distribution with n = 10 and p = .9826487252124646
P(X>3) = 1 - P(X<=3) = 1 - P(X=0) - P(x=1) - P(x=2) - P(x=3)
= 1 - 10C0*(1-p)^10 - 10C1*p*(1-p)^9 - 10C2*p^2*(1-p)^8 - 10C3*p^3*(1-p)^7
= 1-(1-p)^10-10*p*(1-p)^9-45*p^2*(1-p)^8-120*p^3*(1-p)^7
= 1 - 5.427168792892338*10^-11
= 0.99999999995

