Use mathematical induction to prove that for all integers n
Use mathematical induction to prove that for all integers n 0, 2^3n 1 is divisible by 7.
Solution
Ans)
f(n) = 2^3n - 1
 f(0) = 2^3(0) -1 == 1 - 1
    = 0
    Here 0 is divided by 7 hence true
we have to prove (2^3n - 1) is divisible by 7
    f(n) = (2^3n - 1)/7
    (2^3n - 1) = 7.f(n)
    (2^3n - 1) = 7k (let)
let n = n+1
f(n+1) = 2^3(n+1) - 1
        = 2^3n . 2^3 -1
        = 2^3n . 8 - 1
        Add +8 and -8
        = 2^3n .8 -1 + 8 - 8
        =8(2^3n - 1) + 7
        we have (2^3n - 1) = 7k
        so after substituting we get
        = 8.(7k) - 7
        =7.(8k - 1)
        = 7n
    It is a multiple of 7
    so,n = n+1 is true
    Hence it is proved that (2^3n - 1) is divisible by 7

