find the exact value of the expression 3sin15cos195 2 sin10
find the exact value of the expression. (3sin15)(cos195) + 2 sin105
Solution
(3sin15)(cos195) + 2 sin105
(3sin15)(cos195) = 3sin15cos(180+15)
= -3sin15cos15
= -(3/2)sin(2*15) [ use the formula : sin2a = 2sina*cosa]
= (3/2)sin30
= -(3/2)(1/2) = - 3/4
Now, 2sin105 = 2sin(90+15)
=2cos15
use the formula : cos2x = 2cos^2x -1
So, cos15 = sqrt[( 1+ cos30)/2]
= sqrt[(1 +sqrt3/2)*2]
=sqrt(2 +sqrt3)/2
So, 2cos15 = sqrt(2+sqrt3)
So, (3sin15)(cos195) + 2 sin105 = -3/4 + sqrt(2 +sqrt3)
= [-3 +4sqrt(2 +sqrt3)]/4

