Based upon statistical studies it has been found that 422 of
Based upon statistical studies it has been found that 4.22% of all households in the United States in 2010 had a combined household income above $250,000. If 14,000 households from 2010 are selected at random, what is the probability that:
a) between 600 and 650 of them (inclusive) had a household income above $250,000?
b) at least 575 of them had a household income above $250,000?
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    599.5      
 x2 = upper bound =    650.5      
 u = mean = np =    590.8      
           
 s = standard deviation = sqrt(np(1-p)) =    23.7879852      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0.365730848      
 z2 = upper z score = (x2 - u) / s =    2.509670302      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.642717037      
 P(z < z2) =    0.993957804      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.351240766   [ANSWER]
************************
b)
We first get the z score for the critical value:          
           
 x = critical value =    574.5      
 u = mean = np =    590.8      
           
 s = standard deviation = sqrt(np(1-p)) =    23.7879852      
           
 Thus, the corresponding z score is          
           
 z = (x-u)/s =    -0.685219865      
           
 Thus, the left tailed area is          
           
 P(z >   -0.685219865   ) =    0.753397405 [ANSWER]
   

