1Construct a 95 confidence interval for the mean using the s

1.Construct a 95% confidence interval for the mean using the sample listed below. Assume population is normally distributed.
3.9,4.6,15.6,10.5,16.0,6.7,12.0,9.2,13.8,16.8


1.Construct a 95% confidence interval for the mean using the sample listed below. Assume population is normally distributed.
3.9,4.6,15.6,10.5,16.0,6.7,12.0,9.2,13.8,16.8


3.9,4.6,15.6,10.5,16.0,6.7,12.0,9.2,13.8,16.8


Solution

Getting the mean and standard deviation.

X = 10.91
s = 4.736489558

Note that              
              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    10.91          
t(alpha/2) = critical t for the confidence interval =    2.262157163          
s = sample standard deviation =    4.736489558          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
              
Lower bound =    7.521719485          
Upper bound =    14.29828052          
              
Thus, the confidence interval is              
              
(   7.521719485   ,   14.29828052   ) [ANSWER]

 1.Construct a 95% confidence interval for the mean using the sample listed below. Assume population is normally distributed. 3.9,4.6,15.6,10.5,16.0,6.7,12.0,9.

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site