Problem 2 Given the vectors u2i6jk or vik or w8j7k or Com
Problem 2: Given the vectors
u=2i-6j+k [or <2,-6,1>]
v=-i+k [or <-1,0,1>]
w=8j-7k [or <0,8,-7>]
Compute each of the following quantities using the rules of vector algebra. I’m not particular about which notion you use – I like the pointy brackets (less writing,) but your text has a preference for the i,j,k notion.
a) -6 (w-u+2v)
b) [(1/(||3v-2w||)] u
c) (u+v) . (-2w) [Note that the middle is a “dot product dot” – there’s no such thing as “multiplying” vectors!]
d) Find the angle between the vectors u and v (degrees)
e) Find a vector in the direction of vector v, but whose magnitude is the same as ||w||
Solution
u=2i-6j+k
v=-i+k
w=8j-7k
a) -6(w-u +2v) = -6((0,8,-7) - ( 2, -6,1) +2(-1,0,1) )
=-6( -4 , 14 , -7)
= (24, -84 , 42)
= 24i -j84 +42k
b) [(1/(||3v-2w||)] u
(3v -2w) = 3( 2, -6 , 1) -2( 0, 8 -7) = (6, -34 , 17)
||3v -2w|| = sqrt(6^2 +34^2 +17^2) = 38.48
[(1/(||3v-2w||)] u = (2i -6j +k)/38.48 = 0.05i - j0.155 +0.026k
c) (u+v)(-2w)
(u+v) = i - 6j +2k
Dot product(u+v) (-2w) = ( 1, -6 , 2)(0, -16 , 14) = 0 +96+28 = 124
d) anlge between u and v:
dot product u.v = -2+1 = -1
||u|| = sqrt(2 +36+1) = sqrt39
||v|| = sqrt(1+1) = sqrt2
cosx = u.v/||u||.||v|| = -1/srt(39*2) = -1/8.83
x = 83.50 deg
![Problem 2: Given the vectors u=2i-6j+k [or <2,-6,1>] v=-i+k [or <-1,0,1>] w=8j-7k [or <0,8,-7>] Compute each of the following quantities using Problem 2: Given the vectors u=2i-6j+k [or <2,-6,1>] v=-i+k [or <-1,0,1>] w=8j-7k [or <0,8,-7>] Compute each of the following quantities using](/WebImages/28/problem-2-given-the-vectors-u2i6jk-or-vik-or-w8j7k-or-com-1075468-1761563993-0.webp)