Use a halfangle formula to find the exact value of the expre
Solution
31) We have sin(1/2(x)) = +- sqrt(1-cosx)/2
Now consider x = 5pi/6
Then sin(5pi/12) = + - sqrt(1-cos(5pi/6))/2
=> sin(5pi/12) = + sqrt(1-(-sqrt3/2)/2)
=> sin(5pi/12) = +sqrt((2+sqrt3)/4) = +(1/2)sqrt(2+sqrt3)
32) sin(1050) = sin(180-75) = sin(750) = sin(5pi/12) = (1/2)sqrt(2+sqrt3)
33) sin4x = sqrt(3)/2
=> sin4x = sin(pi/3), sin(pi-pi/3), sin(2pi+pi/3), sin(3pi+pi/3),..
=> 4x=pi/3, 2pi/3, 7pi/3, 10pi/3,..
=> x=pi/12, pi/6, 7pi/12, 5pi/6,..
34) cos2x = sqrt2/2
=> cos2x = cos(pi/4), cos(2pi-pi/4),cos(2pi+pi/4),cos(4pi-pi/4),
=> 2x=pi/4, 7pi/4, 9pi/4, 15pi/4
=> x=pi/8, 7pi/8, 9pi/8, 15pi/8
35) cos2x + 2cosx + 1 = 0
Let y = cosx
Then y2+2y+1=0
=> (y+1)2=0
=> y=-1
=> cosx = -1
=> cosx=cospi
=> x=pi
36) 2sin2x = sinx
=> 2sin2x-sinx = 0
=> sinx(2sinx-1)=0
=> sinx = 0 and sinx=1/2
=> x=0,,pi and x = pi/6, pi-pi/6 = 5pi/6
Hence x=0, pi, pi/6, 5pi/6
37) 2cos2x +sinx-2=0
2(1-sin2x)+sinx-2=0
=> 2-2sin2x+sinx-2=0
=> -2sin2x+sinx=0
=> sinx(-2sinx+1)=0
=> sinx=0 or sinx=1/2
=> x=0, pi, pi/6, 5pi/6

