Prove that for any triangle ABC abb sinAsinBsinBSolutionwe k


Prove that for any triangle ABC, a-b/b -sinA-sinB/sinB

Solution

we know sine law

a/sinA=b/sinB = c/sinB =k

so a = ksinA , b= ksinB

LHS = a -b /b

= (ksinA - ksinB)/ksinB

= k(sinA -sinB)/ksinB

=(sinA -sinB) /sinB

L.H.S=R.H.S

so hence proved

 Prove that for any triangle ABC, a-b/b -sinA-sinB/sinBSolutionwe know sine law a/sinA=b/sinB = c/sinB =k so a = ksinA , b= ksinB LHS = a -b /b = (ksinA - ksinB

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site