Prove that for any triangle ABC abb sinAsinBsinBSolutionwe k
Solution
we know sine law
a/sinA=b/sinB = c/sinB =k
so a = ksinA , b= ksinB
LHS = a -b /b
= (ksinA - ksinB)/ksinB
= k(sinA -sinB)/ksinB
=(sinA -sinB) /sinB
L.H.S=R.H.S
so hence proved

we know sine law
a/sinA=b/sinB = c/sinB =k
so a = ksinA , b= ksinB
LHS = a -b /b
= (ksinA - ksinB)/ksinB
= k(sinA -sinB)/ksinB
=(sinA -sinB) /sinB
L.H.S=R.H.S
so hence proved
