The nth harmonic number is defined nonrecursively as 1 12 1
The nth harmonic number is defined non-recursively as: 1 +1/2 + 1/3 + 1/4 + ... + 1/n. Come up with a recursive definition and use it to guide you to write a method definition for a double -valued method named harmonic that accepts an int parameters n and recursively calculates and returns the nth harmonic number.
Solution
HarmonicSeries.java
import java.util.Scanner;
 public class HarmonicSeries {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        System.out.print(\"Please enter the n value: \");
        int num = scan.nextInt();
        double result = harmonic(num);
        System.out.println(\"Harmonic Series Result: \"+result );
   }
    public static double harmonic (int n){
        if(n == 1) {
    return 1.0;
    } else {
    return (1.0 / n) + harmonic(n - 1);
    }
    }
}
Output:
Please enter the n value: 8
 Harmonic Series Result: 2.7178571428571425

