The nth harmonic number is defined nonrecursively as 1 12 1
The nth harmonic number is defined non-recursively as: 1 +1/2 + 1/3 + 1/4 + ... + 1/n. Come up with a recursive definition and use it to guide you to write a method definition for a double -valued method named harmonic that accepts an int parameters n and recursively calculates and returns the nth harmonic number.
Solution
HarmonicSeries.java
import java.util.Scanner;
public class HarmonicSeries {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
System.out.print(\"Please enter the n value: \");
int num = scan.nextInt();
double result = harmonic(num);
System.out.println(\"Harmonic Series Result: \"+result );
}
public static double harmonic (int n){
if(n == 1) {
return 1.0;
} else {
return (1.0 / n) + harmonic(n - 1);
}
}
}
Output:
Please enter the n value: 8
Harmonic Series Result: 2.7178571428571425
