Find several integers that are congruent to 5 modulo 6 and t
Find several integers that are congruent to 5 modulo 6 and then square each of these integers. For each integer m from Part (a), determine an integer k so that 0 lessthanorequalto k
Solution
a.
5,11,17,23
5^2=25=1 mod 6
11^2=121=1 mod 6
17^2=289=1 mod 6
23^2=529=1 mod 6
b)
k=1
c)
For each integer m, if m=5 mod 6 then m^2=1 mod 6
d.)
Let, m=5 mod 6
m=6k+5
m^2=(6k+5)^2=36k^2+25+60k=36k^2+24+60k+1=1 mod 6
Hence proved
