Variation of Parameters Find the general solution of y9ycsc3
Variation of Parameters
Find the general solution of y\'\'+9y=csc(3x)
Solution
First we find complementary solution ie solution to homogeneous ode
y\'\'+9y=0
y\'\'=-3^2 y
General solution is
y= a sin(3x)+ b cos(3x)
IN variation of parameters we make a guess of particular solution based on the complementary solution as
yp= P(x) sin(3x)+Q(x) cos(3x)
with condition
P\' sin(3x)+Q\' cos(3x)=0
yp\'=3P cos(3x)-3Q sin(3x)
yp\'\'=-9yp +3P\' cos(3x)-3Q\' sin(3x)
HEnce,
3P\' cos(3x)-3Q\' sin(3x)= csc(3x)
We have condition
P\' sin(3x)+Q\' cos(3x)=0
HEnce, Q\'=-P\' sin(3x)/cos(3x)
Substituting gives
3P\' cos(3x)+3P\' sin^2(3x)/cos(3x)= csc(3x)
Hence
3P\'(cos^2(3x)+sin^2(3x))=cot(3x)
3P\'= cot(3x)
Integrating gives
3P = log(sin(3x))/3
P=log(sin(3x))/9
3P\'= cot(3x)
Q\'=-P\' sin(3x)/cos(3x)
hence,
Q\'=-1/3
Q=-x/3
So particular solution is
yp= log(sin(3x)) sin(3x)/9 -x cos(3x)/9
General solution is
y=a sin(3x)+ b cos(3x)+log(sin(3x)) sin(3x)/9 -x cos(3x)/9

