The weights of steers in a herd are distributed normally The
The weights of steers in a herd are distributed normally. The standard deviation is 100 lbs and the mean steer weight is 1200 lbs. Find the probability that the weight of a randomly selected steer is between 1000 and 1369 lbs. Round your answer to four decimal places.
Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    1000      
 x2 = upper bound =    1369      
 u = mean =    1200      
           
 s = standard deviation =    100      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2      
 z2 = upper z score = (x2 - u) / s =    1.69      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.954486023      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.931735891   [ANSWER]  

