Urban planners will use electronic traffic counters to count
Solution
(a) P(xbar<2000) = P((xbar-mean)/(s/vn) <(2000-2165)/(485/sqrt(33)))
=P(Z<-1.95) = 0.0256 (from standard normal table)
-------------------------------------------------------------------------------------------------------
(b)P(xbar>2200) = P(Z>(2200-2165)/(485/sqrt(33)))
=P(Z>0.41) = 0.3409 (from standard normal table)
-------------------------------------------------------------------------------------------------------
(c)P(2100<xbar<2300)
=P((2100-2165)/(485/sqrt(33)) <Z< (2300-2165)/(485/sqrt(33)))
=P(-0.77<Z<1.60)
=0.7246 (from standard normal table)
-------------------------------------------------------------------------------------------------------
(d)P(xbar>2400) = P(Z> (2400-2165)/(485/sqrt(33)))
=P(Z>2.78) = 0.0027(from standard normal table)
Since the probability is less than 0.05, this result does not support the stated population mean for this road
