Prove the identity cot x 1 cos 2x sin 2x Note that each St
     Prove the identity.  cot x (1 - cos 2x) = sin 2x  Note that each Statement must be based on a Rule chosen from the Rule menu. To see a  select the corresponding question mark.   
  
  Solution
cotx(1-cos2x)=sin2x
 let us simplify the left side
 cos(2x) = 2cos2(x) - 1
 so we get:
 cotx(1-(2cos2(x) - 1))
 cotx(1-2cos2(x) +1)
 cotx(2-2cos2x)
 let us take 2 common
 cotx(2(1-cos2x))
 now we know that 1-cos2x=sin2x
 so let us replace 1-cos2x by sin2x
 cotx(2sin2x)
 now cotx=cosx/sinx
 (cosx/sinx)(2sin2x)
 so we get
 2sin2xcosx/sinx
 so one sinx will cancel out and we will be left with 2sinxcosx which is equal to sin2x
 so left hand side is equal to right hand side
 hence proved.

