Prove the identity cot x 1 cos 2x sin 2x Note that each St
Prove the identity. cot x (1 - cos 2x) = sin 2x Note that each Statement must be based on a Rule chosen from the Rule menu. To see a select the corresponding question mark.
Solution
cotx(1-cos2x)=sin2x
let us simplify the left side
cos(2x) = 2cos2(x) - 1
so we get:
cotx(1-(2cos2(x) - 1))
cotx(1-2cos2(x) +1)
cotx(2-2cos2x)
let us take 2 common
cotx(2(1-cos2x))
now we know that 1-cos2x=sin2x
so let us replace 1-cos2x by sin2x
cotx(2sin2x)
now cotx=cosx/sinx
(cosx/sinx)(2sin2x)
so we get
2sin2xcosx/sinx
so one sinx will cancel out and we will be left with 2sinxcosx which is equal to sin2x
so left hand side is equal to right hand side
hence proved.
