fx y x2sinxySolutiondfdx 2xsinxy x2ycosxy Hence d2fdx2 2

f(x, y) = x2sin(xy)

Solution

df/dx = 2xsin(xy) + x2ycos(xy)
Hence d2f/dx2 = 2sin(xy) + 2xycos(xy) + 2xycos(xy) - x2y2sin(xy) = (2-x2y2)sin(xy) + 4xycos(xy)

df/dy = x2*xcos(xy) = x3cos(xy)
Hence d2f/dy2 = -x4sin(xy)

d2f/dxdy = 3x2cos(xy) - x3ysin(xy)

Hence the 2nd Order partial derivatives are:
d2f/dx2 = (2-x2y2)sin(xy) + 4xycos(xy)
d2f/dy2 = -x4sin(xy)
d2f/dxdy = 3x2cos(xy) - x3ysin(xy)

 f(x, y) = x2sin(xy)Solutiondf/dx = 2xsin(xy) + x2ycos(xy) Hence d2f/dx2 = 2sin(xy) + 2xycos(xy) + 2xycos(xy) - x2y2sin(xy) = (2-x2y2)sin(xy) + 4xycos(xy) df/dy

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site