Carbon adsorption linearization A graduate student conducts
Solution
a)
X/M = a Cfb
Using natural logarithm on both sides,
ln(X/M) = ln(a Cfb)
=> ln(X/M) = ln(a) + ln(Cfb)
=> ln(X/M) = ln(a) + b ln(Cf) ............(eqn 1)
For commercial activated carbon,
y = 0.2979 x - 4.6473
=> ln(X/M) = 0.2979 ln(Cf) - 4.6473 .............. (eqn 2)
Comparing eqn1 and eqn 2,
ln(a) = -4.6473
=> a = e-4.6473 = 9.587 x 10-3
b = 0.2979
For sludge derived activated carbon,
y = 0.3587 x - 5.2689
=> ln(X/M) = 0.3587 ln(Cf) - 5.2689 .............. (eqn 3)
Comparing eqn1 and eqn 3,
ln(a) = -5.2689
=> a = e-5.2689 = 5.149 x 10-3
b = 0.3587
General Freundlich equation for commercial activated carbon : X/M = 9.587 x 10-3 Cf0.2979
General Freundlich equation for sludge derived activated carbon : X/M = 5.149 x 10-3 Cf0.3587
b)
For commercial activated carbon,
ln(X/M) = 0.2979 ln(Cf) - 4.6473
=> ln(X/M) / 2.303 = 0.2979 ln(Cf) / 2.303 - 4.6473 / 2.303 .....[Dividing both sides with 2.303]
=> log(X/M) = 0.2979 log(Cf) - 2.018
For sludge derived activated carbon,
ln(X/M) = 0.3587 ln(Cf) - 5.2689
=> ln(X/M) / 2.303 = 0.3587 ln(Cf) / 2.303 - 5.2689 / 2.303 ....[Dividing both sides with 2.303]
=> log(X/M) = 0.3587 log(Cf) - 2.288
There will be no change in the Freuindlich equation parameters a and b.
So,
General Freundlich equation for commercial activated carbon : X/M = 9.587 x 10-3 Cf0.2979
General Freundlich equation for sludge derived activated carbon : X/M = 5.149 x 10-3 Cf0.3587


