Find the Laplace transform Fs ft of the function ft 4t2 5

Find the Laplace transform F(s) = {f(t)} of the function f(t) = 4t^2 - 5 sin(3t) F(s) = {4t^2 - 5sin(3t)} =

Solution

Given that

f(t) = 4t2 - 5sin(3t)

F(s) = L{f(t)} = L{ 4t2 - 5sin(3t) }

= 4L{t2} - 5L{ sin(3t) }

F(s) = L{f(t)} = 4[ 2!/s(2+1) ] - 5[ 3/(s2 + 32) ] [Since , L{tn} = n!/sn+1 , L{sin(at)} = a/(s2 + a2) ]

F(s) = L{f(t)} = 4[ 2/s3 ] - [ 15/(s2 + 9) ] [ Since , 2! = 2.1 = 2 ]

F(s) = L{f(t)} = 8/s3 - 15/(s2 + 9)

 Find the Laplace transform F(s) = {f(t)} of the function f(t) = 4t^2 - 5 sin(3t) F(s) = {4t^2 - 5sin(3t)} = SolutionGiven that f(t) = 4t2 - 5sin(3t) F(s) = L{f

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site