Find the Laplace transform Fs ft of the function ft 4t2 5
     Find the Laplace transform F(s) = {f(t)} of the function f(t) = 4t^2 - 5 sin(3t)  F(s) =  {4t^2 - 5sin(3t)} =   
  
  Solution
Given that
f(t) = 4t2 - 5sin(3t)
F(s) = L{f(t)} = L{ 4t2 - 5sin(3t) }
= 4L{t2} - 5L{ sin(3t) }
F(s) = L{f(t)} = 4[ 2!/s(2+1) ] - 5[ 3/(s2 + 32) ] [Since , L{tn} = n!/sn+1 , L{sin(at)} = a/(s2 + a2) ]
F(s) = L{f(t)} = 4[ 2/s3 ] - [ 15/(s2 + 9) ] [ Since , 2! = 2.1 = 2 ]
F(s) = L{f(t)} = 8/s3 - 15/(s2 + 9)

