Assume the interval 045 085 is a Confidence Interval for pro
Assume the interval (0.45, 0.85) is a Confidence Interval for proportion with n = 26.
A) Find the sample proportion
B) Find the confidence level.
Solution
A) Find the sample proportion
p=(0.45+0.85)/2=0.65
-------------------------------------------------------------------------------------------------------------
B) Find the confidence level.
Z*sqrt(p*(1-p)/n) = (0.85-0.45)/2 =0.2
--> Z*sqrt(0.65*(1-0.65)/26) = 0.2
--> Z=0.2/0.09354143 =2.13809
So it is P(Z>2.13809) =0.0163 (from standard normal table)
It is 1-0.0163*2=0.9674
i.e. 96.74%
