Find sin tan 1 a2 A aSquareroot a2 4 B a C 1Squareroot2 4
     Find  sin (tan 1 a/2)  A. a/Squareroot a^2 + 4  B. a  C. 1/Squareroot^2 + 4  D. 2/Squareroot a^2 + 4![Find sin (tan 1 a/2) A. a/Squareroot a^2 + 4 B. a C. 1/Squareroot^2 + 4 D. 2/Squareroot a^2 + 4Solutionsin[tan-1(a/2)] let arctan(a/2) = y by definition tany =  Find sin (tan 1 a/2) A. a/Squareroot a^2 + 4 B. a C. 1/Squareroot^2 + 4 D. 2/Squareroot a^2 + 4Solutionsin[tan-1(a/2)] let arctan(a/2) = y by definition tany =](/WebImages/28/find-sin-tan-1-a2-a-asquareroot-a2-4-b-a-c-1squareroot2-4-1076592-1761564754-0.webp) 
  
  Solution
sin[tan-1(a/2)]
let arctan(a/2) = y
 by definition
 tany = (a/2)
 bring tany in terms of siny
 siny/cosy = (a/2)
 siny = (a/2) cosy
 squaring
 sin^2(y) = (a/2)^2*cos^2(y)
 sin^2(y) = (a/2)^2*(1 - sin^2(y))
 sin^2(y) = (a/2)^2 - (a/2)^2sin^2(y)
 sin^2(y) + (a/2)^2sin^2(y) = (a/2)^2
 sin^2(y)[1 + (a/2)^2] = (a/2)^2
 sin^2(y) = (a/2)^2 /(1+(a/2)^2)
 siny = (a/2)/sqrt(1+(a/2)^2)]
 so sin(arctan(a/2)) = siny = a/sqrt(4+a^2)]
![Find sin (tan 1 a/2) A. a/Squareroot a^2 + 4 B. a C. 1/Squareroot^2 + 4 D. 2/Squareroot a^2 + 4Solutionsin[tan-1(a/2)] let arctan(a/2) = y by definition tany =  Find sin (tan 1 a/2) A. a/Squareroot a^2 + 4 B. a C. 1/Squareroot^2 + 4 D. 2/Squareroot a^2 + 4Solutionsin[tan-1(a/2)] let arctan(a/2) = y by definition tany =](/WebImages/28/find-sin-tan-1-a2-a-asquareroot-a2-4-b-a-c-1squareroot2-4-1076592-1761564754-0.webp)
