It is said that happy and healthy workers are more efficient
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.333333333          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.030429031          
               
 Now, for the critical z,              
 alpha/2 =   0.015          
 Thus, z(alpha/2) =    2.170090378          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.066033747          
 lower bound = p^ - z(alpha/2) * sp =   0.267299586          
 upper bound = p^ + z(alpha/2) * sp =    0.399367081          
               
 Thus, the confidence interval is              
               
 (   0.267299586   ,   0.399367081   ) [ANSWER]
*******************
b)
As we can see in the confidence interval, 0.30 is inside it. So, there is no significant evidence that the proportion of companies that provide such facilities on site is distinct from the overall proportion. [CONCLUSION]

