2 A pharmaceutical company wanted to estimate the population
2. A pharmaceutical company wanted to estimate the population mean of monthly sales for their 250 sales people. 35 sales people were randomly selected. Their mean monthly sales was $10,332 with a population standard deviation of $1,031. Construct a 95% confidence interval for the population mean.
3. A survey of households in a small town showed of 2,205 sampled households, that in 845 households at least one member attended a town meeting during the year. Using the 99% level of confidence, what is the confidence interval for the proportion of households represented at a town meeting?
Solution
2.
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    10332          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
N = 250
 n = 35
s = effective sample standard deviation =    sigma*sqrt[(N-n)/(N-1)] = 958.0280429          
 n = sample size =    35          
               
 Thus,              
 Margin of Error E =    317.3893066          
 Lower bound =    10014.61069          
 Upper bound =    10649.38931          
               
 Thus, the confidence interval is              
               
 (   10014.61069   ,   10649.38931   ) [ANSWER]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

