Solve 4 sin2 x 3 cosx 3 The smallest nonnegative radian sol

Solve 4 sin^2 (x) 3 cos(x) = 3

The smallest non-negative radian solution is:     

The next smallest non-negative radian solution is:

Solution

The given equation is

-4 sin^2 (x) 3 cos(x) = 3

4(1-cos^2 (x))+3 cos(x)= 3

4-4 cos^2 (x)+3 cos(x)=3

4-4cos^2 (x)+3 cos(x)-3=0

-4cos^2 (x)+3cos(x)+1=0

comparing by ax^2+bx+c=0

cosx=[-3(+/-)sqrt(9+16)]/-8=[-3+5]/-8=-1/4,cosx=[-3-5]/-8=1

cosx=1 and cosx=-1/4

The smallest non-negative radian solution is: x=0 radians since cosx=1 when cos0=1

The next smallest non-negative radian solution is: not defined.cosx=(-1/4),x=arccos(-1/4),x=1.823

Solve 4 sin^2 (x) 3 cos(x) = 3 The smallest non-negative radian solution is: The next smallest non-negative radian solution is:SolutionThe given equation is -4

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site