Solve 4 sin2 x 3 cosx 3 The smallest nonnegative radian sol
Solve 4 sin^2 (x) 3 cos(x) = 3
The smallest non-negative radian solution is:
The next smallest non-negative radian solution is:
Solution
The given equation is
-4 sin^2 (x) 3 cos(x) = 3
4(1-cos^2 (x))+3 cos(x)= 3
4-4 cos^2 (x)+3 cos(x)=3
4-4cos^2 (x)+3 cos(x)-3=0
-4cos^2 (x)+3cos(x)+1=0
comparing by ax^2+bx+c=0
cosx=[-3(+/-)sqrt(9+16)]/-8=[-3+5]/-8=-1/4,cosx=[-3-5]/-8=1
cosx=1 and cosx=-1/4
The smallest non-negative radian solution is: x=0 radians since cosx=1 when cos0=1
The next smallest non-negative radian solution is: not defined.cosx=(-1/4),x=arccos(-1/4),x=1.823
