Twelve trials are conducted in a Bernoulli process in which
Solution
P(X=0) = 12C0 * 0.30 * 0.712 = 0.0138
P(X=1) = 12C1 * 0.31 * 0.711 = 0.0712
P(X=2) = 12C2 * 0.32 * 0.710 = 0.1678
P(X=3) = 12C3 * 0.33 * 0.79 = 0.2397
P(X=4) = 12C4 * 0.34 * 0.78 = 0.2311
P(X=5) = 12C5 * 0.35 * 0.77 = 0.1585
P(X=6) = 12C6 * 0.36 * 0.76 = 0.0792
P(X=7) = 12C7 * 0.37 * 0.75 = 0.0291
P(X=8) = 12C8 * 0.38 * 0.74 = 7.7977 * 10-3
P(X=9) = 12C9 * 0.39 * 0.73 = 1.4853 * 10-3
P(X=10) = 12C10 * 0.310 * 0.72 = 1.9096 * 10-4
P(X=11) = 12C11 * 0.311 * 0.71 = 1.488 * 10-5
P(X=12) = 12C12 * 0.312 * 0.70 = 5.3144 * 10-7
a) E(X) = 0 * 0.0138 + 1 * 0.0712 + 2 * 0.1678 + 3 * 0.2397 + 4 * 0.2311 + 5 * 0.1585 + 6 * 0.0792 + 7 * 0.0291 + 8 * 7.7977 * 10-3 + 9 * 1.4853 * 10-3 + 10 * 1.9096 * 10-4 + 11 * 1.488 * 10-5 + 12 * 5.3144 * 10-7
= 3.6
b) E(X2) = 02 * 0.0138 + 12 * 0.0712 + 22 * 0.1678 + 32 * 0.2397 + 42 * 0.2311 + 52 * 0.1585 + 62 * 0.0792 + 72 * 0.0291 + 82 * 7.7977 * 10-3 + 92 * 1.4853 * 10-3 + 102 * 1.9096 * 10-4 + 112 * 1.488 * 10-5 + 122 * 5.3144 * 10-7
= 15.48
var(X) = E(X2) - (E(X))2
= 15.48 - 3.62
= 2.52
std dev = sqrt(2.52) = 1.587
c) P(X=3) = 12C3 * 0.33 * 0.79 = 0.2397
d) P(2 < X < 8 ) = P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6) + P(X=7) + P(X=8)
= 0.1678 + 0.2397 + 0.2311 + 0.1585 + 0.0792 + 0.0291 + 7.7977 * 10-3
= 0.9132
e) P(X > 3) = 1 - (P(X < 3))
= 1 - (P(X=0) + P(X=1) + P(X=2) + P(X=3))
= 1 - (0.0138 + 0.0712 + 0.1678 + 0.2397 )
= 1 - 0.4925 = 0.5075

