2 Find the roots of the following function fx x6 16x3 64
2).
Find the roots of the following function:
f(x) = x6 + 16x3 + 64 = 0
Solution
Given that
f(x) = x6 + 16x3 + 64 = 0
Let u = x3 , u2 = x6
Substitute u ,u2 in given equation
x6 + 16x3 + 64 = 0
u2 + 16u + 64 = 0
( u+8) (u+8) = 0
u = -8
Substitute back u = x3
x3 = -8
We know that
For x3 = f(a) the solutions are, x = 3f(a) , 3f(a).( (-1 - 3i)/2 ) , 3f(a).( (-1 + 3i)/2 )
x3 = - 8
Here, f(a) = - 8
x = 3-8 , 3-8.( (-1 - 3i)/2 ) , 3-8.( (-1 + 3i)/2 )
x = - 2 , -2 . ( (-1 - 3i)/2 ) , -2 . ( (-1 + 3i)/2 ) [ since, 3-8 = -3(2)3 = - (23)1/3 = - 2 ]
x = - 2 , - ( -1 - 3i) , - ( -1 + 3i)
x = - 2 , 1 + 3i , 1 - 3i
Therefore,
The roots are x = - 2 , 1 + 3i , 1 - 3i
