2 Find the roots of the following function fx x6 16x3 64

2).

Find the roots of the following function:

f(x) = x6 + 16x3 + 64 = 0

Solution

Given that

f(x) = x6 + 16x3 + 64 = 0

Let u = x3 , u2 = x6

Substitute u ,u2 in given equation

    x6 + 16x3 + 64 = 0

u2 + 16u + 64 = 0

( u+8) (u+8) = 0

u = -8

Substitute back u = x3

x3 = -8

We know that

For x3 = f(a) the solutions are, x =  3f(a) ,  3f(a).( (-1 - 3i)/2 ) , 3f(a).( (-1 + 3i)/2 )

  x3 = - 8

Here, f(a) = - 8   

  x =  3-8 ,   3-8.( (-1 - 3i)/2 ) ,   3-8.( (-1 + 3i)/2 )

x = - 2 , -2 . ( (-1 - 3i)/2 ) , -2 . ( (-1 + 3i)/2 ) [ since, 3-8 = -3(2)3 = - (23)1/3 = - 2 ]

x = - 2 , - ( -1 - 3i) , - ( -1 + 3i)

x = - 2 , 1 + 3i , 1 - 3i

Therefore,

The roots are x =  - 2 , 1 + 3i , 1 - 3i

2). Find the roots of the following function: f(x) = x6 + 16x3 + 64 = 0 SolutionGiven that f(x) = x6 + 16x3 + 64 = 0 Let u = x3 , u2 = x6 Substitute u ,u2 in gi

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site