Average height of an adult male is normally distributed with

Average height of an adult male is normally distributed with a mean of 69.5 and standard deviation of 2.4. What percentage of males will have height between 67.1- 73.1

0.1570
0.4525
0.2140
0.7745
0.1451
0.5922


Average height of an adult male is normally distributed with a mean of 69.5 and standard deviation of 2.4. What percentage of males will have height between 67.1- 73.1

0.1570
0.4525
0.2140
0.7745
0.1451
0.5922



0.1570
0.4525
0.2140
0.7745
0.1451
0.5922


Solution

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    67.1      
x2 = upper bound =    73.1      
u = mean =    69.5      
          
s = standard deviation =    2.4      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1      
z2 = upper z score = (x2 - u) / s =    1.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.158655254      
P(z < z2) =    0.933192799      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.7745 [ANSWER]      

 Average height of an adult male is normally distributed with a mean of 69.5 and standard deviation of 2.4. What percentage of males will have height between 67

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site