Prove the identity cot2x cos2 x cot2 x cos2 xSolutionLHS
Prove the identity. cot^2x - cos^2 x = cot^2 x cos^2 x
Solution
L.H.S. :
cot2x - cos2x
= cos2x / sin2x - cos2x (as cotx = cosx/sinx)
= (cos2x - cos2x sin2x )/ sin2x
= [cos2x (1 - sin2x)]/sin2x
= (cos2x. cos2x) / sin2x (as 1 - sin2x = cos2x)
= (cos2x / sin2x ) . cos2x
= cot2x . cos2x
= R.H.S.
