Write z1 and z2 in polar form z1 4 Squareroot 3 4i z2 1
Write z_1 and z_2 in polar form. z_1 = 4 Squareroot 3 - 4i, z_2 = -1 + I z_1 = ___________ z_2 = ____________ Find the product z_1z_2 and the quotients z_1/z_2 and 1/z_1. (Express your answers in polar form.) z_1z_2 = _________ z_1/z_2 = _________ 1/z_1 = _________
Solution
z1=4sqrt3-4i
r=sqrt(x^2+y^2)=sqrt((4sqrt3)^2 + 4^2)=8
tan theta= y/x= -4/4sqrt3=-1/sqrt3
theta=-30
therefore polar form is 8(cos(-30)+ isin(-30))=8(cos 30 -isin 30)
z2= -1+i
r=sqrt(x^2+y^2)=sqrt((-1)^2 + 1^2)=sqrt2
tan theta=y/x=1/-1
theta=-45
therefore required polar form is sqrt2(cos(-45 )+isin(-45))=sqrt2(cos 45-isin45)
