Find the exact value under the given conditions sin 35 0
Find the exact value under the given conditions:
sin= 3/5 ,0<<pi/2
cos=2sqrt(5)/5, -pi/2<<pi/2
a) sin(+)
b) cos(+)
c) sin ()
d) tan()
Solution
I am using A for alpa and B for beta as I can not type Alpha and Beta
SinA = 3/5
opp/hyp = 3/5; opp2/hyp2 = 9/25
Using Pythogiris theoram opp2 + adj2 = hyp2
9 + adj2 = 25
adj2 = 25 -9 = 16
adj = sqrt(16) = 4
cosA = adj/hyp = 4/5
TanA = SinA/CosA = (3/5)/(4/5) = 3/4
CosB = 2sqrt(5)/5 = 2/sqrt(5)
adj/hyp = 2/sqrt(5); adj2/hyp2 = 4/5
opp2 + adj2 = hyp2
opp2 + 4 = 5
opp2 = 1
opp = 1
SinB = 1/Sqrt(5)
TanB = (1/sqrt(5))/(4/sqrt(5) = 1/4
SinA = 3/5; CosA=4/5; TanA = 3/4
SinB = 1/sqrt(5); CosB = 2/sqrt(5); TanB = 1/4
a) using Double angle formula
Sin(A+B) = SinACosB + CosASinB
= (3/5)(2/sqrt(5) + (4/5)(1/sqrt(5)
= 6/5sqrt(5) + 4/5sqrt(5)
= 10/5sqrt(5) = 2/sqrt(5)
b) Using double angle formula
Cos(A+B) = CosACosB - SinASinB
= (4/5)(2/sqrt(5) - (3/5)(1/sqrt(5)
= 8/5sqrt(5) - 3/5sqrt(5)
= 5/5sqrt(5) = 1/5sqrt(5)
C) using double angle formula
Sin(A-B) = SinACosB - CosASinB
= (3/5)(2/sqrt(5) - (4/5)(1/sqrt(5)
= 6/5sqrt(5) - 4/5sqrt(5)
= 2/5sqrt(5)
d) Using double angle formula
Tan(A-B) = (TanA - TanB)/(1+TanATanB)
= (3/4 - 1/4)/(1+(3/4)(1/4))
= (2/4)/(1+3/16)
= (1/2)/(19/16)
= (1/2)(16/19) = 8/19

