Let fx gx hx epsilon Fx such that fx does not equal 0 Prove
Let f(x), g(x), h(x), epsilon F[x] such that f(x) does not equal 0. Prove that: If f(x) | g(x) and f(x) | [g(x)^2 +h(x)], then f(x). Hint: g(x)^2 = g(x) * g(x)
Solution
given f(x) | g(x)
=>g(x)=k.f(x)
=>g(x)2=k2.f(x)2
=>g(x)2=l.f(x) eq1 where l=k2.f(x)
and
f(x) | [g(x)^2 +h(x)]
=>[g(x)^2 +h(x)]=m.f(x) eq2
eq2-eq1
=>h(x)=(l-m)f(x)=p.f(x) where p=l-m
there fore f(x)|h(x)
then f(x). Hint: g(x)^2 = g(x) * g(x)
![Let f(x), g(x), h(x), epsilon F[x] such that f(x) does not equal 0. Prove that: If f(x) | g(x) and f(x) | [g(x)^2 +h(x)], then f(x). Hint: g(x)^2 = g(x) * g(x)S Let f(x), g(x), h(x), epsilon F[x] such that f(x) does not equal 0. Prove that: If f(x) | g(x) and f(x) | [g(x)^2 +h(x)], then f(x). Hint: g(x)^2 = g(x) * g(x)S](/WebImages/28/let-fx-gx-hx-epsilon-fx-such-that-fx-does-not-equal-0-prove-1077658-1761565474-0.webp)