Find the fourth roots of 256sqrt 3 iSolutionLet z 43 i14 Pu
Find the fourth roots of 256(sqrt 3 + i)
Solution
Let z= 4(3 +i)^1/4
Put 3= rcos and 1= rsin
r=2 and =/6
Therefore z= 4.2^1/4 [ Cos+isin]^1/4
So, z= 4*2^1/4 [ cos (2n+)/4 + i Sin (2n+)/4 ] Applying De-Moivre’s theorem
Where n=0,1,2,3
Put n=0
z1= 4*2^1/4 [ cos 7.5 + i Sin 7.5]
Put n=1,
z2= 4*2^1/4 [ -Sin7.5 + i Cos7.5]
Put n=2,
z3= 4*2^1/4[ -Cos7.5 -iSin7.5]
Put n=3,
z4= 4*2^1/4 [ Sin7.5-iSin7.5]
![Find the fourth roots of 256(sqrt 3 + i)SolutionLet z= 4(3 +i)^1/4 Put 3= rcos and 1= rsin r=2 and =/6 Therefore z= 4.2^1/4 [ Cos+isin]^1/4 So, z= 4*2^1/4 [ cos Find the fourth roots of 256(sqrt 3 + i)SolutionLet z= 4(3 +i)^1/4 Put 3= rcos and 1= rsin r=2 and =/6 Therefore z= 4.2^1/4 [ Cos+isin]^1/4 So, z= 4*2^1/4 [ cos](/WebImages/28/find-the-fourth-roots-of-256sqrt-3-isolutionlet-z-43-i14-pu-1077787-1761565561-0.webp)
