Let Tn satisfy the recurrence Tn aTnb fn where fn is a pol
     Let T(n) satisfy the recurrence T(n) = aT(n/b) + f(n), where f(n) is a polynomial satisfying deg(f) > log_b (a). Prove that ease (3) of the Master Theorem applies, and in particular that the regularity condition necessarily holds. #include  #include  #include  #include  using namespace std;  // Determines if the string is a number bool isNumeric(string pszInput);  int main () {                  // Hold the line in the file         string line;                  // Open the file         ifstream myfile (\"example.txt\");          if (myfile.is_open()) {                  // While the file is good                 while (myfile.good() ) {                          // Get the current line in the file                         getline (myfile, line);                          // Verify that the line is an integer                         if (isNumeric(line)) {                                  // Convert \'line\' to an integer and calculate                                 if (atoi(line.c_str())%2 == 0) {                                          cout << \"Even\ \";                                                  } else {                                          cout << \"Odd\ \";                                                                  }                                                          }                  }                  myfile.close();          } else {                  cout << \"Unable to open file\ \";           }          // Exit         return 0;  
 
       
  Solution
#include
