Find all the vertical and horizontal asymptotes xintercept a
Find all the vertical and horizontal asymptotes, x-intercept and y-intercept f(x) = 12x^2 - 8x - 4/x^4 + 4x +12
Solution
f(x)=[12x2 -8x-4]/(x4+4x+12)
x intercept => y =0
[12x2 -8x-4]/(x4+4x+12) =0
12x2 -8x-4=0
3x2 -2x-1=0
3x2 -3x+x-1=0
(3x+1)(x-1)=0
x =-1/3 , x =1
(x,y)=(-1/3,0),(1,0)
for y intercept x =0
y=[0 -0-4]/(0+0+12)
y =-1/3
(x,y)=(0,-1/3)
for vertical asymptote denominator =0
(x4+4x+12) =0
no vertical asymptote
horizontal asymptote :
y =limx->[12x2 -8x-4]/(x4+4x+12)
y=limx->x2[12 -8/x -4/x2]/(x4(1+ 4/x3 +12/x4))
y=limx->[12 -8/x -4/x2]/(x2(1+ 4/x3 +12/x4))
y=[12 -0-0]/((1+ 0+0))
y=0
![Find all the vertical and horizontal asymptotes, x-intercept and y-intercept f(x) = 12x^2 - 8x - 4/x^4 + 4x +12Solutionf(x)=[12x2 -8x-4]/(x4+4x+12) x intercept Find all the vertical and horizontal asymptotes, x-intercept and y-intercept f(x) = 12x^2 - 8x - 4/x^4 + 4x +12Solutionf(x)=[12x2 -8x-4]/(x4+4x+12) x intercept](/WebImages/28/find-all-the-vertical-and-horizontal-asymptotes-xintercept-a-1077926-1761565644-0.webp)