The matrix A matrix has two distinct real eigenvalues if an
The matrix A = |matrix has two distinct real eigenvalues if and only if k > |
Solution
det(A - I) = 0
det
-4 - .....k
3..........1 - =
= (-4 - )(1 - ) - 3k = 0
= -(4+)(1-) -3k=0
-1 [ (4+)(1-) +3k ]= 0
(4+) (1-) + 3k = 0
4 -4 + -^2 +3k = 0
-^2 -3 +4+3k=0
-1(^2 +3 -(4+3k) ) = 0
^2 +3 -(4+3k) = 0
has two distinct real eigenvalues if
the discriminant is positive
b^2 -4ac > 0 [ if equation of form ax^2 +bx +c=0 ]
(3)^2 -4.1.-(4+3k) >0
9 +4(4+3k) > 0
9 +16 +12k > 0
12k >25
k >25/12
k > 1
