Historically the default rate on a certain type of commercia
Historically, the default rate on a certain type of commercial loan is 20 percent. If a bank makes 100 of these loans, what is the approximate probability that more than 24 will result in default? (Use the normal approximation. Round the z value to 2 decimal places.)
Solution
Here,
mean = n p = 100*0.20 = 20
 standard deviation = np(1-p) = sqrt(100*0.20*(1-0.20)) = 4
 We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    24.5      
 u = mean =    20      
           
 s = standard deviation =    4      
           
 Thus,          
           
 z = (x - u) / s =    1.13      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.13   ) =    0.129238112 [ANSWER]

