2 By statistics faculty with rank of assistant professor fin
2. By statistics, faculty with rank of assistant professor finishing their second year of employ- ment at a higher education institution in Ontario earn an average of $65,500 per year with a standard deviation of $3500. In an attempt to verify this salary level, a random sample of 64 assistant professor with two years of experience was selected from a personnel database for all higher education institutions in Ontario.
[5] a. Describe the sampling distribution of the sample mean, X , of the average salary of these 64 assistant professors.
 [5] b. Within what limit would you expect the sample mean to fall with probability 0.95 [5] c. Obtain the probability that X  is greater than 66,000.
Solution
a)
By central limit theorem, it will have the same mean, u(X) = 65500.
It will have a standard deviation given by
sigma(X) = sigma/sqrt(n) = 3500/sqrt(64) = 437.5.
********************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    65500      
 z = the critical z score =    1.644853627      
 s = standard deviation =    437.5      
           
 Then          
           
 x = critical value =    66219.62346   [ANSWER]
***********************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    66000      
 u = mean =    65500      
           
 s = standard deviation =    437.5      
           
 Thus,          
           
 z = (x - u) / s =    1.142857143      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.142857143   ) =    0.126548954 [ANSWER]
           
   


