In a random sample of 60 refrigerators the mean repair cost
In a random sample of 60 refrigerators, the mean repair cost was $118.00 and the population standard deviation is $16.70
A 90% confidence interval for the population mean repair cost is (114.45,121.55) Change the sample size to
nequals=120. Construct a 90% confidence interval for the population mean repair cost. Which confidence interval is wider? Explain.
(Round to two decimal places as needed.)
Solution
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    118          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    16.7          
 n = sample size =    120          
               
 Thus,              
               
 Lower bound =    115.4924298          
 Upper bound =    120.5075702          
               
 Thus, the confidence interval is              
               
 (   115.4924298   ,   120.5075702   ) [ANSWER]
*********************
As we can see, the confidence interval for the sample of 60 is wider than the confidence interval for the sample of 120.
This is becasue the standard error of the mean is less when the sample size increases, as
standard error = s / sqrt(n).

