Beer bottles are filled so that they contain an average of 4
Beer bottles are filled so that they contain an average of 415 ml of beer in each bottle. Suppose that the amount of beer in a bottle is normally distributed with a standard deviation of 6 ml. Use Table 1.
   
What is the probability that a randomly selected bottle will have less than 410 ml of beer?(Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)
   
   
What is the probability that a randomly selected 8-pack of beer will have a mean amount less than 410 ml? (Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)
   
   
What is the probability that a randomly selected 15-pack of beer will have a mean amount less than 410 ml? (Round intermediate calculations to 4 decimal places, “z” value to 2 decimal places, and final answer to 4 decimal places.)
   
| Beer bottles are filled so that they contain an average of 415 ml of beer in each bottle. Suppose that the amount of beer in a bottle is normally distributed with a standard deviation of 6 ml. Use Table 1. | 
Solution
A)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    410      
 u = mean =    415      
           
 s = standard deviation =    6      
           
 Thus,          
           
 z = (x - u) / s =    -0.83      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -0.83   ) =    0.203269392 [answer]
*****************
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    410      
 u = mean =    415      
 n = sample size =    8      
 s = standard deviation =    6      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -2.36      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -2.36   ) =    0.009137468 [ANSWER]
           
C)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    410      
 u = mean =    415      
 n = sample size =    15      
 s = standard deviation =    6      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -3.23      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -3.23   ) =    0.000618951 [ANSWER]
           


