Probability and Statistics independent random variables 63 L
Probability and Statistics, independent random variables.
6.3. Let the random variables X, Y, and Z be independent random variables. Find the following probabilities in terms of FX(x), FY(y), and FZ(z). (a) P(|X|Solution
Note:- x- means a number which is very close to x but still less than x for eg- 5- means 4.9999999999999999999999.....
I have used it in my solution because P(x<=2) is Fx(2) but P(x<2) is Fx?(2-) , hope u understand
P(x,y,z)=P(x)*P(y)*P(z) b/c they are independent
P(|x|<5)= P(-5<x<5)= Fx(5-)-Fx(-5)
P(y<4)= F(4-)
P(Z3>8)=P(Z>2) = 1-P(Z<=2) = 1-F(2)
P(|x|<5, y<4, Z3>8) = P(|x|<5)* P(y<4)*P(Z3>8) because they are independent
= (Fx(5-)-Fx(-5))*F(4-)*(1-F(2))
b) P(x=5, y<0, z>1) = P(x=5)*P(y<0)*P(z>1)
now, P(x=5)= Fx(5)-Fx(-5-) , P(y<0) = Fy(0-) , P(z>1)=1-P(z<=1) = 1- Fz(1)
so, P(x=5, y<0, z>1) = P(x=5)*P(y<0)*P(z>1)= (Fx(5)-Fx(-5-))*( Fy(0-) * (1- Fz(1))
c) P(min(x,y,z)<2) =1- P(x>=2,y>=2,z>=2) =1-P(x>=2)*P(y>=2)*P(z>=2) =1 -( (1- Fx(2-))* (1-Fy(2-?))* (1-Fz(2-?)))
d) P(max(x,y,z)<6) = P(x<6,y<6,z<6) = P(x<6)*P(y<6)*P(z<6) = Fx(6-)* Fy(6-?)* Fz(6-?)

